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Abstract

We propose a dynamic production function of population health and mortality

from birth onwards. Our parsimonious model provides an excellent fit for the mor-

tality and survival curves for both primate and human populations since 1816. The

model sheds light on the dynamics behind many phenomena documented in the lit-

erature, including (1) the existence and evolution of mortality gradients across socio-

economic statuses, (2) non-monotonic dynamic effects of in-utero shocks, (3) persis-

tent or “scarring” effects of wars and (4) mortality displacement after large temporary

shocks such as extreme weather.
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We propose a coherent framework to understand how population health and mortality

evolve from birth onwards, and how economic and other environmental factors early in

life affect this evolution. Statistical and economic models of health and mortality typically

only concentrate on adults. Yet a large literature now documents that events and invest-

ments in utero and throughout childhood are powerful predictors of both economic and

health outcomes later in life (Almond and Currie 2011, Almond et al. 2018). In the absence

of such a quantitative model, it is difficult to predict how shocks will affect population

health at various ages, and even harder to design optimal investment or compensation

policies (Almond et al., 2018).

We present a simple dynamic model of the production of health from birth to death for

a heterogenous population. In the spirit of classic demographic work (Vaupel et al., 1979),

the model assumes that some individuals are born more frail than others and tend to die

young. Subsequently, the health distribution of the survivors evolves according to a sim-

ple law of motion that depends on the level of external resources and their distribution.1

As in Grossman (1972), the health stock deteriorates with age but can increase if resources

are invested. But unlike Grossman (1972), resources in our model are stochastic, a crucial

distinction. In addition, individuals can die from accidents unrelated to their health sta-

tus. These “external” causes of death play a particularly important role in explaining the

level of mortality during the adolescent years.

We then estimate the model separately for more than 100 birth cohorts born in the

early 19th century and later, using high quality data from the Human Mortality Database.

Despite vast changes in life expectancy throughout the period, the model provides an ex-

cellent characterization of the age-profiles of mortality for each of these cohorts. The

estimated model is consistent with the following stylized facts: (1) the profile of log mor-

tality rates by age has a J-shape, and (2) survival curves for humans have “rectangular-

ized” over the last two centuries, that is, survival curves have become flatter throughout
1The model can be seen as formally similar to the stochastic processes used to model corporate defaults

(Lando, 2004).
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life and then drop abruptly at older ages).

Having demonstrated that the model can accurately describe population mortality

profiles, we show that the simple extensions of the model can generate other previously

documented phenomena. Specifically we show that (1) changes in lifetime resources gen-

erate “SES gradients”, persistent gaps in log mortality rates across populations with dif-

ferent socio-economic status that fall with age; (2) changes in in utero conditions result

in non-monotonic (u-shaped) health impacts over the lifetime; (3) short-term negative

shocks (such as wars) which temporarily lower resources result in “scarring” (elevated

mortality of survivors); and (4) environmental shocks such as hot weather can lead to

harvesting or displacement effects among the old (temporarily elevated mortality rates

followed by temporarily lower mortality).

The evolution of mortality over the lifetime is remarkably similar across human pop-

ulations and in fact across most primates. Because of this regularity, demographers have

searched for a “unified” model of mortality that would predict mortality from birth to

death at least since the early 19th century (Gompertz, 1825). Like much of the following

literature (e.g. Li and Anderson, 2013) Gompertz’s model accounts for mortality only after

a certain age, focusing on the roughly log-linear portion of the mortality curve after age 30-

40. There are a few exceptions. An early model proposed by Heligman and Pollard (1980)

describes the probability of dying at a given age for all ages. More recently Sharrow and

Anderson (2016) and Palloni and Beltrán-Sánchez (2016) propose alternative statistical

models of survival rates that also fit observed lifetime survival curves well.

The main contribution of this paper is to provide a production function that describes

the evolution of a population’s health and mortality starting at birth that is suited for

tracking the long term impacts of various insults and investments. To that end, our ap-

proach differs in one fundamental aspect from the demographic approach just described.

As in the seminal Grossman (1972) model, we model directly how the health stock of

each individual evolves, rather than only modeling the mortality or survival rates of the
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aggregate population. This approach is better suited for studying how various shocks

affect the health and mortality of the population overtime — we can easily model inputs

into health directly and trace their effects as cohorts age by tracking the evolution of the

distribution of health. We demonstrate this by studying the effects of increasing lifetime

resources, and the impact of negative in utero shocks on a population’s subsequent aver-

age health and mortality. We also study the effects of temporary shocks such as wars or

bad weather.

Our basic model is more parsimonious than the original Grossman model, or its most

recent successors in the economics literature (Dalgaard and Strulik, 2014 or Galama and

Van Kippersluis, 2018). We a focus on a production process only and ignore maximizing

behavior. Our main innovation relative to these papers is to provide a unified framework

for mortality at all ages, including childhood, and to allow for heterogeneous endow-

ments.2 Including this key childhood period allows us to match the pattern of declin-

ing mortality among children (up to adolescence). Alternative state-of-the art models,

such as Dalgaard and Strulik (2014)’s accumulating health deficits model, or Galama and

Van Kippersluis (2018)’s theory of socioeconomic status and mortality, start with adults

and thus cannot account for this feature of the data. A recent model by Dalgaard et al.

(2019) does account for the childhood period, but it does so by adding a separate health

production function for childhood. Instead our framework is able to describe aging from

birth to old ages with a unique law of motion, where mortality declines during childhood

due to both selection effects and investments. To our knowledge, there is no other model

that has accurately (empirically) predicted the lifetime health and mortality of popula-

tions, while also providing a law of motion for health at the individual level.

This paper proceeds as follows. We start by describing the data and the stylized facts

that inform our model in section 1. We then describe the model and its qualitative prop-

erties in section 2. In section 3 we show that the model does an excellent job at matching
2Our model is also different in a number of other dimensions. For example, we do not impose a maxi-

mum life expectancy and we incorporate stochastic shocks.
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the mortality profiles of many cohorts, and discuss which parameters in the model help

rationalize the large increases in life expectancy we observe throughout the period. We

also show that the model describes the evolution of chimpanzee mortality well. In section

4 we then investigate how the model can be used to understand the effects of permanent

(in utero or SES) and temporary (wars and heat waves) changes in the environment. We

also briefly describe how a planner would optimally allocate health resources. Section 5

concludes.

Stylized Facts: Health and Mortality Over the Lifetime

Mortality

We study the evolution of mortality for a given cohort using data from the Human Mor-

tality Database (hereafter HMD). The HMD provides population and death counts by age,

birth-year and gender collected through vital registration systems (birth and death cer-

tificates) and censuses, from 1816 up to 2015. Despite a few limitations, the HMD is the

highest quality data available for cohort analysis.3 We compute mortality rates by age for

each cohort as the number of deaths divided by the population at that age, and use these

to compute survival rates.4 We also use these rates to compute cohort life expectancy. We

focus on French cohorts for two reasons: these cohorts are large and the data goes back as

early as 1816. While there are important differences across countries, as we discuss below

the overall profiles of mortality by age are very similar for other countries.
3The HMD has some important limitations. Migration is not accounted for. Counts are not accurate

for years during which the territory changed, in 1861, 1869, 1914, 1920, 1939, 1943, 1945, 1946 – often
corresponding to wars (see Appendix ). Data is imputed for ages above 90.

4Technically, we compute annual probabilities of dying at a given age instead of rates. Since the HMD
provides no information on the distribution of births and deaths within a year, we make no adjustments for
the fact that the deaths in the first year do not correspond to individuals born that year. The HMD reports
probabilities (qx) that make adjustments based on a series of standard assumptions in epidemiology and
demography. In order to avoid introducing discrepancies, we treat the data and the model symmetrically
by computing death probabilities naively. These probabilities are very similar to the ones HMD computes
(See Appendix Figure 12).
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It is important to distinguish cohort mortality from period mortality, which is used

more often. Appendix Figure 13 summarizes the evolution of period and cohort life ex-

pectancy at birth by gender in France. Recall that period life expectancy is a synthetic con-

struct computed using the cross-sectional mortality rates of all living cohorts in a given

year. For example, to compute the 1850 period life expectancy, the mortality rates at age 70

are approximated using the observed mortality rates of 70 year-olds in 1850. In contrast,

cohort life expectancy is computed using the realized mortality rates of a given cohort. To

compute the 1850 cohort life expectancy, the mortality rates at age 70 are those observed

in 1920. In a stationary environment, with stable mortality rates by age over time, the

two measures are very close. For the 1816-1860 cohorts for whom life expectancy at birth

was stable around 40 for females and 39 for males, the environment would appear to be

close to stationary. But life expectancy increased substantially starting in the late 19th cen-

tury, with cohort life expectancy increasing more than period life expectancy, as would be

expected when environmental or medical factors results in lower age-specific mortality

rates. Females born around 1920 lived around 69 years, and males around 59, which is

substantially longer than cohorts born a century earlier. Finally note that, although period

life expectancy rose for men, several cohorts of men (born roughly 1880-1900) experienced

declines in life expectancy, likely due to WWI and WWII.

The logarithm of mortality has the shape of a “tick mark”: high at birth, low among

the young, and high and rising almost linearly with age in late adulthood. This can be

seen in Figure 1 which shows the logarithm of mortality rates by age, for selected birth

cohorts of women born between 1860 and 1940 for various European countries (panel a)

and for France (panel b). Although the level of mortality has changed substantially over

time, the basic evolution of mortality rates by age is very similar across many countries.

These patterns are similar, though not identical for men (see Appendix Figure 14 and 15).

[ Figure 1 about here ]

Mortality curves also display an “adolescent hump,” especially visible in cohorts born
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in the 19th century. Starting in adolescence, mortality rates jump up. Hormonal changes

and other changes associated with the transition into adulthood are thought to explain

this adolescent hump (Preston et al. 2000, Thiele, 1871). Finally, there are clearly visible

spikes for some cohorts, corresponding to wars and epidemics. These patterns are more

visible when examining all the cohort curves (Appendix Figure 14 and 15). These patterns

are not unique to humans. Bronikowski et al. 2011 show, using longitudinal data from

primates living in the wild, that these patterns of mortality are very similar across all

primates.

Health

A striking empirical pattern is that the distribution of health indicators is roughly Gaus-

sian, at any given age after birth and before old age. Partial but continuous health mea-

sures like birth weights and heights (which evolve until adulthood) are close to normally

distributed too. For example, Wilcox and T Russell (1983) show that the distribution of

birth weights is normal. That adults heights are normally distributed was shown in the

19th century first by Quetelet and then by Galton and Pearson, as discussed by Tanner

and Tanner (1981).5

How does the distribution of health evolve with age? Unfortunately, the HMD does

not contain any health measure–there is in fact no data we are aware of that tracks a con-

sistent measure of health from birth to death for a given cohort, but several studies pro-

vide partial descriptions of this evolution. Mean health falls with age, peaking sometime

in young adulthood. For example Deaton and Paxson, 1998, Case and Deaton, 2005, Hal-

liday et al. (2018) and Kaestner et al. (2020) show that self-reported health status declines

with age among adults. Contemporary data show that hospitalization days (a proxy for

morbidity or lack of health) are high in childhood, are at their lowest among individuals
5More recently Limpert et al. (2001) show that either a normal or a log normal distribution fits female

heights well.
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12-18 and then rise again among older adults (see table P-10 in Centers for Disease Con-

trol and Prevention 2014). Deaton and Paxson (1998), Halliday (2011) and Halliday et al.

(2019) also report that the variance of health also rises with age, and then seems to level

off or fall among the oldest, though the data are less clear about what happens among

the oldest. The variance in organ function also rises with age (Steves et al. 2012). Lastly,

both objective measures of health and subjective measures of health are strong predictors

of mortality (Benyamini and Idler, 1999; McGee et al., 1999).

A Unified Model of Aging and Mortality

In this section we present a simple model that can account for these basic “stylized facts”

about health and mortality. We will then show that our model fits mortality data well and

investigate if it can generate other mortality patterns in the literature.

A basic model of natural mortality. Individuals are born with an initial health en-

dowment H0. This initial health endowment differs across individuals in the population

and has an unknown distribution. While health is a multi-dimensional object, we use a

simplified single-dimension object in the model, in line with Grossman (1972).6 Every

period, the environment provides resources I to all individuals, which increase health,

H . In addition, individuals in the same environment are more or less lucky, and expe-

rience an idiosyncratic shock "a to their resources. For example I characterizes the per

capita amount of food that a country produces, but a given person might receive less if

for instance rain was unusually low in their location. The variance of "a captures how un-

equal the distribution of resources within the population is. These idiosyncratic shocks

are assumed to be i.i.d. every period. Finally, the health stock depreciates each period by

an amount d(a), which is increasing with age a (d0(a) > 0) : every period there is a “user
6Alternatively, the single-dimension health variable in our model can be viewed as the sufficient statistis-

tics for larger collection of health indicators (vascular, brain functions, lung, etc.), each following in theory a
different low of motion. However, the current lack of reliable series of health data along several dimensions
would in practice make such a model difficult to identify.
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cost”, reflecting, for example, errors in the epigenome, the system that translates genes

into proteins, or damage to chromosomes occurring during cell division. As Olshansky

et al. (2002) describe it, this aging process reflects “the accumulation of random damage

to the building blocks of life — especially to DNA, certain proteins, carbohydrates and

lipids (fats) — that begins early in life and eventually exceeds the body’s self-repair ca-

pabilities.” Together these forces determine the evolution of the health stock, which is an

unobserved latent variable.

Individuals die when their stock of health dips below a threshold H , which is fixed

throughout the lifetime and identical for all individuals. Let Da = I(Ha  H,Da�1 = 0)

denote the random variable equal to one if the individual dies at age a. The population’s

health and mortality is characterized by the following dynamic system:

8
>>>>>><

>>>>>>:

Ha = Ha�1 � d(a) + I + "a if Da�1 = 0

Da = I(Ha < H,Da�1 = 0),

D0 = 0

with I 2 R. Note that if Da = 1 then Ha is undefined – we do not observe the health of

individuals after they die. But we observe the mortality rate for the population at age a,

which is given by MRa = P (Da = 1|Ds = 0 , 8s < a). Thus the distribution of health at

any age is a function of the entire history of shocks and investments, as can be seen from

the definition of MRa, which conditions on survival in every previous period.

We make three key parametric assumptions, in order to make the model more tractable

and consistent with the empirical evidence about the evolution of health with age. First,

H0 follows a normal distribution N (µH , �
2
H
). Second, shocks to resources every period

also follow a normal distribution "a ⇠ N (0, �2
"
).7 Third, depreciation is a power function

7Conceptually, the model has no difficulty accommodating other distributions. But simulations with
alternative assumptions (e.g. log normal errors) resulted in counterfactual mortality rates and a poorer
overall fit.
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d(t) = �a
↵ with � 2 (0,1),↵ 2 (0,1).8 This aging process in the model starts directly

at birth, consistent with evidence that aging markers are evolving among children (Wong

et al., 2010), and it increases with age, as in biological models of senescence (Armitage

and Doll, 1954; Pompei and Wilson, 2002).9 Figure 2 illustrates the evolution of health

and mortality in the first two periods. Initially, the health distribution is normal. Then

the health distribution shifts to the right during the first period (as long as I is positive

and larger than the aging term) and spreads out (because of the stochastic shock "a).

Individuals who were born too frail or who experience large negative shocks move to

the left of the threshold and die. Graphically, the infant mortality rate (the fraction of

individuals who die in the first period) corresponds to the area under the dashed red

curve below the threshold. In the second period, this truncated distribution moves right

again (if I is large relative to d(1)), and the population receives a new shock, generating

mortality again among those with large negative shocks.10

[ Figure 2 about here ]

The stochastic term "t therefore plays a key role. In its absence, there would be no

deaths in period 2 – nor in any subsequent period, until the depreciation term becomes

large enough to push the leftmost part of the distribution below the threshold.11 Then

mortality would increase every period. Eventually everyone dies–this is proved more

formally in Appendix .12[ Figure 3 about here ]

This basic model matches the stylized patterns described above well. Figure 3b shows
8Our estimates for human populations find that ↵ > 1 and the depreciation is therefore convex in age,

as hypothesized by Grossman. This is not imposed a priori by the model. Many empirical studies in geron-
tology have focused on the “rate of aging”, which, in our model would correspond to �H

H
= �d(a)

H
. As in

those studies and consistent with Dalgaard et al. (2019) we find that individuals with lower health levels
age at a faster rate.

9See Gavrilov and Gavrilova (1991) and Weibull (1951) for attempts at biological micro-foundations
drawing on reliability theory from engineering.

10If, in the first period, depreciation were very large relative to investment, then mortality would rise
from birth onwards – a theoretical possibility observed neither among humans nor primates.

11If I is less than aging, then one could also generate positive mortality in the second period without a
stochastic term. But then mortality would be rising from age 2 onwards, which we do not observe in the
data.

12This feature is different from the standard Grossman model in which eternal life is possible, as noted
by Case and Deaton (2005) or Strulik (2015).
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the evolution of the health distribution and the resulting mortality over the lifetime. Just

like their empirical counterparts, cohorts in our model exhibit the following characteristic

patterns: (1) the distribution of health is roughly normal in most periods; (2) mean pop-

ulation health increases and then falls (conversely the model generates morbidity rates

that are a U-shaped function of age)13 (3) the variance of health increases and then falls;

and (4) mortality falls and then rises at a roughly log-linear rate after middle age. There

is only one feature of the data that we have not accounted for: the increase in mortality

around adolescence (“adolescent hump”) which we consider next.

External causes of death. Not all deaths have direct biological causes. Many deaths,

like accidents or homicides, strike individuals regardless of their health status. These

“extrinsic” causes of death can be integrated in the model by simply adding an i.i.d. “ac-

cident shock” that is independent of the stock of health Ha.14 Then a constant fraction

 2 [0, 1] of the population is randomly killed every period. This random accident rate

places a floor in the level of mortality that is constant across ages.15 Figure 4a shows what

happens to health and mortality when we add a lifetime accident shock. This extended

model also replicates the basic shape of mortality well–a constant accident rate increases

the level of mortality but does not change its basic evolution, nor does it affect the distri-

bution of health among the living.

[ Figure 4 about here ]

Contemporary data however show that the mortality rate from external causes of

death is not constant throughout life. Instead, it is well approximated by a step func-

tion, with a major increase around adolescence (Figure 4b).16 Based on this evidence, we
13Morbidity rate is the fraction of individuals with health below a health threshold but above the death

threshold.
14Corporate default models similarly complement the equation describing the evolution of firms’ values

with a “jump to default” component.
15If all health-related deaths were eliminated, this accident rate would uniquely determine the life ex-

pectancy of the population (1/).
16The shapes in the two figures are not identical. However, the contemporary data is not cohort but

period data. In contemporary settings, the two profiles differ substantially, as discussed already. However
there is no historical cohort mortality data by cause of death, so we cannot create the more relevant cohort
figure.
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assume that  starts at zero but becomes positive in adolescence at an arbitrary age (a⇤).

Adding external causes of death in this fashion adds two more parameters to the model.

For simplicity, we assume that the onset of adolescence is unaffected by health levels, and

we take it to be exogenous throughout the paper – we use historical data on the onset of

menarche to identify the onset of adolescence instead.17 Figure 4a shows that adding this

step function results in a profile of mortality that qualitatively matches the main features

we observe.18

Explaining Mortality Patterns

We now assess whether the model can quantitatively match observed patterns of mortal-

ity. We do this by estimating the parameters of the model and assessing the model’s fit

for both human and primate cohorts.

Identification and Estimation.

Identification. Two out of the nine parameters of the full model cannot be identified.

To see this, note that the expression for mortality in the first period MR1 = P (D1 =

1) = P (µH � �a
1 + I + "1 < H) is the standard Probit model. We can subtract H and

divide by �H on both sides of the expression that determines the probability of dying,

and leave the mortality rate unchanged. Therefore the threshold H and the standard

deviation of the initial distribution �H are not identified. Without loss of generality, we set

H = 0 and �H = 1.19 After normalization, all the parameters are expressed in “standard

deviation” units, except for ↵ and , which are “scale free”– they do not depend on the
17This assumption could be relaxed. The onset of menarche, a proxy for adolescence in women, has

declined from approximately age 16 to age 12 in the last two centuries. This development has been linked
to nutritional changes and might be a function of health.

18Note that, regardless of whether the accident rate is constant or increases in adolescence, the distribu-
tion of health and its evolution over the lifetime remain unchanged and follow the patterns shown in panel
b of Figure 3b. This is because these deaths are random and do not depend on health status.

19More precisely, we need to normalize 2 out of three parameters. We find it more intuitive to normalize
the threshold rather than the initial mean, but this choice is arbitrary.
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initial distribution. For example, we interpret µH as the distance from the threshold of the

initial distribution, in standard deviations of the initial distribution.

The rescaled model characterizes the biological evolution of health and mortality of a

cohort using 7 (rescaled) parameters: one for the mean initial health (µH), two governing

the aging process (�,↵), two characterizing the effects of resources, in the form of average

investments (I) and the variance of these investments or shocks (�2
"
), and finally one ()

capturing the accident rate increase occurring in adolescence occurring at a⇤. We do not

estimate this last parameter. For humans, we assume adolescence starts at age = (- 0.0175

x calendar year) + 47.4 for all women, based on the estimates provided in de La Roche-

brochard (2000) who estimated the equation using historical data from multiple sources.

Adolescence is assumed to start one year later for men, as observed in contemporary set-

tings. We test the robustness of the results to alternative assumptions. For chimpanzees

we use two alternative start dates, age 8 and age 14, which span the ranges described in

the literature.20

Estimation. Despite the model’s conceptual simplicity, the mortality rate at a given

age cannot be expressed in closed-form.21 We therefore estimate the parameters using the

simulated method of moments. We matched the annual age-specific survival rates, and

thus implicitly, life expectancy. We construct survival curves using the population and

mortality counts by gender, year of birth and year of death for France. Appendix A has

the data and estimation details.

Mortality Rates Over the Lifetime

We start by estimating the model for the 1816 cohort. The model very closely matches

the 1816 cohort’s mortality rates at every age (Figure 5a shows results for females). For
20Bronikowski et al. 2011 report the onset at age 14, other sources (Behringer et al. (2014)) place the onset

at age 8.
21Our discrete model is similar to a class of models used for corporate default probability and securities

pricing. This literature has established that, except for the particular case of a constant or linear drift, these
models do not admit closed-form solutions (see Lando, 2004).
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females, the predicted life expectancy is 38 years and 102 days compared to the actual

life expectancy of 38 years and 91 days.22 We estimate an initial mean health of about

0.86, so many individuals are born at or below the threshold (Appendix Table 1). Absent

any shocks or investment in the first period, infant mortality would have been roughly

15% (instead of 17%). Mortality falls dramatically after age 1 because there is selection

(many frail individuals have already died), and because investment is large relative to

aging in the first period (I is estimated as 0.4 and � as 0.0006). The variance of resources

is large (estimated to be roughly 1) so a few unlucky individuals still fall below the death

threshold after age 2. We estimate an external mortality rate of roughly 9 per thousand

for every year after adolescence starts, lowering the 1816 cohort’s life expectancy by about

7.6 years.23 This provides an upper bound estimate of the effect of maternal mortality –

the main cause of death for women in the 19th century – on life expectancy in the past.

Accounting for external deaths is important – the fits of the model significantly improves

when we do. The estimated parameters also change substantially.

Log mortality starts a steady increase after age 45. This occurs because while � is small

(~ 0.0006) the aging rate ↵ is around 1.8, so that the aging function �t↵ is increasing more

than linearly with age. Because health resources I are increasing only linearly, eventu-

ally all individuals die, even lucky ones with many large positive health shocks.24 These

results are robust to a number of alternative estimation modifications including using al-

ternative weights, using an alternative objective function, and allowing for truncation at

age 90. We also estimates models where we estimate the onset of adolescence is normally

distributed, or where we estimate the distribution of the onset of adolescence. These re-

sults are shown in Appendix Table 3 and they show that the fit is not very sensitive to

these alternatives.
22Appendix Table 1 shows alternative measures of fit and the estimated parameters.
23The fit of the model is poor around the time of adolescence. This can be improved upon by allowing

the onset of adolescence to be a normally distributed function and estimating its parameters. These results
are shown in Appendix Table 3.

24See Appendix for a rigorous proof. This statement holds even in the absence of external deaths.
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Gender differences. Appendix Figures 16a show the results for males born in 1816

and Appendix Table 1 shows the estimated parameters. Men born in 1816 lived shorter

lives than women, as has been documented before. Consistent with their greater frailty

and higher infant mortality rates, males’ initial mean health is 19% lower than that of fe-

males’ (Goldin and Lleras-Muney 2019, Cullen et al. 2016). There is a substantial increase

in deaths in adolescence for both males and females, but it is larger for men, consistent

with their greater involvement in accidents and violent deaths. However, because males

have higher overall mortality rates, the elimination of accidental deaths would increase

their life expectancy by about 7.6 years, very similar to the predicted gains for women.

Accounting for the adolescent hump significantly affects the estimated parameters

and drastically improves the fit, as was the case for women. After accounting for the ado-

lescent hump (column 2 of Table 1), we find that males receive slightly larger annual in-

vestments (about 10% greater) but also experience greater variance in investments. They

also age faster in old age (though women age a bit faster during prime ages). Overall, the

model fit is excellent for both genders, though the fit is slightly better for females.

[ Figure 5 about here ]

Primates. Human mortality patterns are very similar to those of other primates.

Therefore our basic model should be able to describe primate mortality well, particu-

larly since they live in relatively stable environments, experience no technological change

and have few optimization opportunities. We estimate the model using the best available

data on populations of female chimpanzees living in the wild from Bronikowski et al.

(2011). These populations are tracked in the wild from birth to death and have been used

to compare mortality rates across various primate populations. We focus on chimpanzees

because they are the closest primates to humans.

Figure 1b shows the results for females chimps. We still obtain a very good fit, despite

the small populations and therefore much noisier estimates. The parameter estimates are

provided in Appendix Table 2. Compared to human females, female chimps are born
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in better health, consistent with the observation that human infants are born frail rela-

tive to other species.25 We also estimate a much lower rate of accidental deaths among

female chimps starting in adolescence, in line with the fact that maternal mortality is a

uniquely important problem among humans (Rosenberg, 1992).26 But other parameters

favor longevity among humans. In female chimps, the estimated annual investment is

about 20% smaller and the variance of this investment is 10% larger than among human

females. Most notably, � is much larger (0.06 v. 0.0006) than in humans, resulting in much

faster aging. As in humans, female chimps live longer than males, partly because males

have larger external causes of death than females.27 They also have larger annual invest-

ments, larger variance in resources and larger aging (↵) than females. But unlike humans,

males have larger initial health.

The Rectangularization of Survival and the Sources of Increases in Life

Expectancy

Remarkably, the model is able to track the evolution of the mortality profiles for all the

individual cohorts since 1816. This evolution is characterized by a “rectangularization”

of the survival curves, which has accelerated over the last decades. Panel a in Figure 6

shows the rectangularization of the survival curves of French women born between 1816

and 1947. Survival to age 1 has increased dramatically. The next section of the survival

curve – roughly from age 1 to age 60 – has considerably flattened. In addition, a steep

downward slope has emerged among the oldest. As a result, more than 70% of those

born in 1940 live past age 70, whereas in the 1816 cohort fewer than 30% did. Panel a in

Figure 6 shows that the model captures this rectangularization with great accuracy: the
25There are several theories for this–for a discussion, see Rosenberg and Trevathan (1995).
26As Rosenberg (1992) puts it, “most primates experience parturition as a simpler, shorter, and very likely

less painful process (than humans).” This difficulty is believed to have led to the use of birth attendants in
almost all known human cultures and times. Our estimates do not imply that external causes of death are
unimportant among primates—neither model estimates a baseline accident rate throughout.

27Not surprisingly, correctly timing the onset of adolescence is not important for females, but makes a
substantial difference for males.
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observed (blue markers) and estimated (red dashes) survival curves are very similar. The

model can fit the data for the 1940 cohort almost as well as for the 1816 cohort. The results

are similar for men (Appendix Table 4) but we do not discuss them here for brevity.28

What are the sources of increases in longevity according to our estimates? Panel b in

Figure 6 shows the evolution of four of the estimated parameters from 1816 and 1923.

Starting in the 1830s, we see a constant and rather drastic decline in external causes of

death, which is consistent with the elimination of maternal mortality (a major cause of

death among prime-age women in the past (Loudon, 1988)), and with the steep decline in

violent deaths as documented for instance by Pinker (2011). Health at birth, µH , started

to increase steadily only at the end of the century, consistent with the timing of improve-

ments in water, sanitation, and the elimination of epidemic and infectious disease mortal-

ity, which greatly reduced infant mortality (Cutler et al., 2006; Preston and Van de Walle,

1978).

By contrast, health resources (I) did not change much in the 19th century (they fall a

bit and rise again), consistent with the debate on the questionable benefits of the Indus-

trial Revolution on health and living standards. However, there is a steady decline in the

variance of health resources – it is also unclear why this occurred, though it is possible

food availability became less variable.29 Most interestingly, we observe a substantial de-

crease in the force of aging (see Figure 6c), the causes of which are unclear. Since food

consumption and heights were rising, this suggests that nutrition is a possible determi-

nant of the aging function (Fogel, 1994).30

Appendix Figure 17 shows the performance of the model for each birth cohort born

1816-1923 (the last cohort with complete data up to age 90). The fit is in general excel-

lent and is steady throughout the 19th century, but it gets much worse for cohorts born
28A full examination of gender differences in the estimated time series is beyond the scope of this paper.
29Alternatively it might be difficult for the model to separately identify the effects of I from the effects of

its variance, because the data on mortality is only informative about the left tail of the health distribution.
30There is unfortunately very little data to investigate what factors might affect the estimated parameters.

This is an interesting area for future research.
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after 1900. There are a few reasons for this. First, for some of the more recent cohorts,

there is still some potential bias due to censoring. Second, three events in the early 20th

century are likely to severely affect the cohort profiles: WWI, the 1918-1919 Spanish flu

pandemic, and WWII. We discuss below how we estimated these, but these events are

difficult to model. The data during these episodes is also of significantly lower quality, as

changes in territory, for example, make the computations of death rates difficult. Lastly,

we are assuming that there is no inter-temporal optimization of health investments taking

place. The rise of social insurance programs throughout the 20th century suggests that

this simplifying assumption is likely to be violated for more recent cohorts. We discuss

optimization and its effects in the last part of the paper.

[ Figure 6 about here ]

Understanding Mortality Dynamics

The evolution of the parameter estimates for each cohort suggests large, lasting changes

in the environment but does not identify their sources. In this section, we investigate

how environmental changes and their implications on mortality rates can be understood,

through the lens of the model, as proceeding from simple shocks to the model param-

eters. Although there is no data to estimate a more sophisticated model that considers

how environmental factors affect the model’s parameters, we conduct a series of qualita-

tive exercises to demonstrate that the model can rationalize the effects of temporary and

permanent shocks in the environment.

Socio-Economic Status Mortality Gradient

A substantial literature documents health and mortality “gradients” – large and persis-

tent differences across individuals with different levels of socio-economic status such as

education, income level, occupation or race (Cutler et al., 2012). For instance, Americans
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with a high permanent income level at age 40 have lower subsequent mortality relative to

those with lower incomes (Chetty et al. 2016). Figure 7a reproduces Chetty et al. (2016)’s

figure showing that the log mortality curves partly converge in old age (implying smaller

gaps at older ages in percentage terms). Similarly, more educated individuals tend to

have healthier behaviors (Cutler and Lleras-Muney 2010), resulting in lower mortality

rates throughout. In their review, Hummer and Lariscy (2011) write, “analyses invariably

show that educational disparities in mortality are narrower at older than at younger adult

ages.”

How can the model rationalize such gradients? Suppose that we extend our model so

that lower income leads to lower I throughout life. In other words, assume there exists a

function I = I(Y,E) with I
0
> 0 for all inputs such as income Y or education E. What is

the effect of increasing Y throughout the lifetime on mortality rates?

We illustrate this by simulating the effect of lowering I by 50% on the 1816 French

female cohort. Figure 7b shows this results in higher and flatter log-mortality curves for

the poorer population. Moreover, the curves for the rich and the poor converge in old

age, just as documented by Chetty et al. (2016) and shown in Figure 7a, and consistent

with the evidence of education. This occurs because, although the frailest individuals are

saved in the first period when Y increases, Y shifts the distribution of health right for all

individuals in the second and subsequent periods. Therefore overall mortality rates fall

throughout the lifetime.

When looking at the profile over the lifetime, the narrowing of the mortality SES gra-

dient (in percentage terms) occurs in the model only after a certain age.31 To illustrate this,

Figure 7c shows the effect of greater I on the gap in mortality between the rich and the

poor, expressed either in levels or logs. Each point in the figure plots the difference be-

tween the rich and the poor at a given age — this is equivalent to plotting the age-specific

coefficients from a regression of age-specific mortality (or log mortality) on a dummy for
31Note that the gap in levels between the high and low I populations is hump shaped with age instead of

u-shaped, growing with age among older adults (Figure 7c).
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the rich population. In log terms, this mortality gap initially grows with age, as hypothe-

sized by the cumulative advantage hypothesis (Lynch 2003, Ross and Wu 1995), because

greater I pushes the entire population further and further away from the threshold every

period. However, gradients eventually fall because of selection, as suggested by Crim-

mins (2005): the population with lower I starts dying, leaving only the healthiest individ-

uals alive. The figure also shows that in levels, SES gaps in mortality rates are u-shaped,

instead of hump-shaped, with age. The reason the gap diminishes between childhood

and adolescence is that, when I is high relative to aging, fewer and fewer people are close

to the death threshold. Thus SES gaps are very small among prime adults, and possibly

hard to detect in finite samples, but they rise with age as illustrated by Kaestner et al.

(2020) for education.

[ Figure 7 about here ]

Health. Lower income (or education) and thus lower I is also predicted to lower aver-

age health at all ages. But the effect increases with age, and then declines once mortality

starts rising in both levels and percentage terms. (See Figure 7c.) These predictions match

the evidence in Case et al. (2002), Currie and Stabile (2003) and House et al. (2005), who

show that the gaps in self-reported health status and morbidity between those born in

poor families and those in born rich families grow with age, but decline after 65.

Resource scarcity or accelerated aging? Instead of affecting annual resources, higher

SES could instead lower rates of aging. SES is associated with more frequent physical

exercise, lower exposure to pollution or lower stress which could be conceptualized as

affecting the rate of depreciation. In the model, an increase in the aging parameters (�

or ↵) and a decrease in I generate similar health and mortality profiles among the old, as

shown in Appendix Figure 18. Thus, with data from (mature) adults only, it is not possible

to infer whether SES is affecting annual resources I or aging rates. But higher aging rates

do not result in any visible health or mortality gaps among children, whereas higher I

does. Therefore, the evidence in Case et al. (2002) or Currie and Stabile (2003), interpreted
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through the lens of the model, suggests that changing family income is equivalent to

changing I . It is possible to break this observational equivalence by relating measures

of aging to SES. Liu et al. 2019 find that education and race are associated with lower

methylation rates (a biomarker for aging), suggesting SES also affects aging rates.

Before moving on, we note that it would be ideal to estimate our model using cohort

data by education or income — however, there is no data that we know of that allows one

to track cohorts from birth (or age 25) to death by permanent income or education levels.32

Our simulations only show that the model can rationalize the observed patterns in the

data.

Also worth noting is that we can also easily use the model to study the effects of per-

manent changes in resources that occur at a specific point in life. For example Schwandt

and Von Wachter (2019) use our model to show that a 1% reduction in health investments

happening at age 18 generates the observed mortality patterns for the cohorts that entered

the labor market during the 1983 recession.

Non-Monotonic Effects of In-Utero Shocks

[ Figure 8 about here ]

Detrimental events in-utero (famines, war, stress, etc.) result in large and persistent

declines in health that are visible in infancy and old age (Almond and Currie, 2011) and

in elevated mortality among the survivors.33 Suppose again that we allow for the initial

mean of the distribution, µH , to be affected by outside forces. What is the effect of exoge-

nously lowering initial health on the subsequent health and mortality of the survivors?

We use the 1816 parameters as a baseline to simulate this effect.
32There are a few longitudinal data sets tracking individuals from birth onwards, but they do not provide

annual data.
33Van den Berg et al. (2006, 2009) and Masters (2018) show that being born in a recession is associated

with increases in mortality rate later in life. Similarly, Lindeboom et al. (2010) show that children born
during the Dutch Potato famine lived shorter lives as a result of the famine. Bharadwaj et al. (2013) show
that investments made immediately after birth among low birth weight children result in lower mortality
rates later in life.
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Our model rationalizes why the age-profile of these responses is non-monotonic, which

canonical models have been unable to explain. The empirical literature finds that the ef-

fects of various shocks appear to “fade out” initially, only to re-appear later in life. (See

Almond et al. (2018) ’s comprehensive review.) They point out that, while the initial fad-

ing out is consistent with the canonical Grossman (1972) model, the non-monotonicity of

the effect is not. The Grossman model predicts a large immediate decline in the popu-

lation’s health after an in-utero shock that becomes hardly visible in adulthood (Figure

8a). Our model, by contrast, predicts exactly the u-shaped pattern described by Almond

et al. (2018). Figure 8b documents that lowering initial health µH by 50% for the 1816

French cohort results in lower health among the survivors at all ages — both in levels

and in percentages — with a u-shaped pattern in age. This occurs without complemen-

tary or compensating investments. The reason this happens in our model — but not in

Grossman’s — is that depreciation in our model is not multiplicative in the stock.34

These results also suggest it is not possible to identify the effects of in-utero shocks

with health data for adolescents or young adults only. Schiman et al. (2017), who study

the effects of experiencing WWII in utero and early childhood, find that its effects on

health, disability, and employment among adults are not visible for young adults, but

grow with age, as predicted here.

Mortality. Mortality at all ages also increases when initial conditions worsen but,

interestingly, displays markedly different patterns depending on the metrics used. When

measured in levels, the effects are again u-shaped. The intuition for this is simple. Among

adolescents and young adults, the average level of health is high and very few individuals

are close to the threshold, so shifting the distribution of health has very little impact on

mortality. But shifts in the distribution will result in higher death rates as the distribution
34Dalgaard et al. (2019)’s model of health deficits also predicts that in-utero shocks will result in health

gaps that increase with age starting in adulthood. But they do not model mortality or the effects of early
childhood shocks on mortality before adulthood. Furthermore, our model predicts a u-shape pattern of ef-
fects rather than a monotonically increasing effect. This u-shape results from our having an early childhood
period where investments move the distribution of health up.
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gets closer to the threshold at older ages. When expressed in percentage terms however,

the predicted effects of negative in-utero shocks on mortality fall with age (Figure 8c),

though this pattern is not necessarily monotonic: in middle ages, when mortality levels

are low, the effects can rise and fall due to small samples. This occurs because the level

of mortality is also u-shaped with age. An important implication of this exercise for the

empirical literature is that the predictions for the dynamic effects of shocks on mortality

are very sensitive to the functional form one chooses to study its effects.

Scarring Effects of Wars

Wars have long-lasting detrimental health effects among survivors. Such “scarring” ef-

fects have been documented in at least 13 European countries after WWII. Compared

to less exposed survivors, individuals who were more exposed to the war experienced

worse economic and health outcomes that persisted several decades later (e.g. Kesternich

et al., 2014, Havari and Peracchi, 2017).35 Similarly Wilson et al. 2014 show the persis-

tence of higher mortality rates of World War I on New Zealand for military personnel

who served during the war, compared with those that did not.

Our model successfully reproduces this scarring pattern and can be used to compute

counterfactuals, which allows us to derive estimates of the impact of the war. We model

the war episodes as declines in the amount of health resources.36 Figure 9 shows the

mortality curves obtained from estimating a model with two shocks: a 4-year decline in I

at age 18 (corresponding to the combined effects of WWI and the 1918 flu pandemic) and a

6-year decline in I at age 43 (corresponding to WWII). This simple characterization of the

wars delivers a mortality curve (red dotted line) remarkably close to the data (blue line),

and a persistent mortality gap with the counterfactual curve obtained by simulating the
35Costa (2012) documents scarring effects of the American Civil War on surviving soldiers.
36This assumption is consistent with historical data for WWII. GDP declined substantially during the

war and 20 to 55% of it was appropriated by Germans during the occupation (Occhino et al., 2007). Food
rationing began in 1940. We can assume that the war is a different type of shock, but we do not obtain
substantially better fit with these alternatives. Results available upon request.
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model when the I-shocks due to the wars are shut down. The model therefore predicts

what previous authors empirically document: the mortality rates for the affected cohort

are persistently higher than those for the unaffected cohort, both during the war and

subsequently. We estimate that WWI lowered life expectancy by approximately 16 years

for the male 1896 cohort, and WWII lowered it by another 2 years.37

[ Figure 9 about here ]

Harvesting Effects

Extreme weather or pollution events appear to displace the distribution of deaths in the

short term, creating a sudden increase in the number of deaths followed by abnormally

low mortality. In demography, this phenomenon is known as “harvesting” and has been,

for instance, documented in France during the 2003 heatwave, as shown in Figure 10a

reproduced from Toulemon and Barbieri (2008).3839

[ Figure 10 about here ]

We now demonstrate that the model can generate this pattern. Suppose that the death

threshold H is mostly a function of the environment. Figure 10b shows the simulated ef-

fect of a temporary increase in the threshold at ages 60 and 61 on the mortality of the 1816

cohort. It results in very high mortality during the shock. But mortality starts dropping

before the shock ends because the frailest individuals have already died in the first period

of the shock, so later on only those that receive a large negative idiosyncratic shock die.

Once the weather disruption ends, and the threshold is restored to its original (lower)

level, mortality falls substantially because there are very few individuals close to the new
37These estimates can be improved upon. We impose an equal annual shock during wars. The fit for

this cohort can be improved substantially if we allow every year of the wars to have its own effect. But
of course, this also lowers the degrees of freedom. Interestingly, if we do this, we find that 1914 was a
particularly bad year, with investment estimated to be -5.3 that year, instead of the 0.57 annual investment
we otherwise estimate for the cohort. The results are shown in Appendix table 5.

38It is unclear whether weather shocks have no effects on the health of those that do not die. See Desch-
enes and Moretti (2009) or Deschênes and Greenstone (2011) for discussions of this.

39See Schwartz (2000) or Zeger et al. (1999) for the effects of pollution, and Deschenes and Moretti (2009)
or Deschênes and Greenstone (2011) for the effects of very hot or very cold weather.
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(lower) threshold. This holds true for a long time until the aging process naturally low-

ers health stocks again, closer to the new lower threshold. Thus a change in the death

threshold generates harvesting, and does so by killing the least healthy individuals of the

cohort. A key characteristic of a threshold change is that it does not affect the health of

the living.

Heat waves and other forms of bad weather also generate excess mortality among

children (Figure 10c). However, the displacement effect is substantially more spread out

among children. In other words, the children who die as a result of the bad weather

would not be dying immediately right after the bad weather ends — they would be liv-

ing substantially longer lives. Thus the cost of this event is much larger in terms of life

expectancy when it affects children than the elderly – because, among children, invest-

ment levels are high relative to depreciation and mortality rates are falling. In contrast,

depreciation among the elderly is much larger.

The Effects of Temporary Shocks

The previous two sections illustrate the effects of temporary decreases in I or increases

in the threshold, but do not compare their effects in the same scale because we aimed to

reproduce existing published results. Figure 11 shows how log mortality rates respond

to all types of temporary shocks. Each shock leaves a unique imprint on mortality rates.

Temporary investment and depreciation decreases have similar scarring effects: mortal-

ity rises when the shock starts and then starts falling after the shock ends but it does not

return to its counterfactual level. On the other hand, only changes in the threshold gen-

erate harvesting. Only variance changes results in a “cross over” in mortality rates in old

ages. And only accident increases leave mortality rates unchanged once the shock ends.

Appendix Figure 19 further reveals that the pattern of these responses over time is not

the same when viewed in logs or in levels.

[ Figure 11 about here ]
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Optimization

We end by considering how optimization might affect our findings under some assump-

tions. In appendix 1 we show that a benevolent planner maximizing life expectancy

would redistribute resources from middle ages to children and to the elderly. The op-

timal health investment profile is increasing with age among the elderly. We also show

that, despite this re-allocation, the basic profile of mortality by age remains similar, that

is it is J-shaped. Our estimates imply that optimization could lead to substantial gains

in life expectancy, though lower than what has been observed in the last two centuries.

This exercise is limited by the lack of available data and the need to make several strong

assumptions. With additional data our model can be easily extended to further account

for optimizing behavior.

Conclusion

This paper proposes a parsimonious production function to study the evolution of health

and mortality over the life course of a population with heterogeneous health endow-

ments. The basic model can be easily estimated by using observed cohort mortality rates.

Despite its simplicity, this model tracks the evolution of the mortality profile of human

cohorts born 1816 to 1940 as well as other species, and it can explain many important mor-

tality patterns documented in the literature, including the rectangularization of survival

curves and SES gradients in health. We also show how to use the model to understand

the dynamic treatment effects of in-utero shocks and other temporary shocks like wars.

The parsimony of the model relies on transparent but strong parametric assumptions.

In particular, we assumed that the environment is stable and exogenously provides a con-

stant level of resources. This is reasonable for primates or early human populations before

the rise of modern medicine and other technical innovations, but not for contemporary

human populations. We have explored how to incorporate changes in the environment
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into the model and shown these changes can qualitatively produce many patterns in the

existing literature. We also assume that health shocks are i.i.d and normally distributed.

We argue that these assumptions are roughly consistent with the evidence in the literature

and with the patterns observed in the HMD data. Alternative assumptions for this distri-

bution of annual shocks could be further investigated to integrate the mortality impact of

contagious diseases such as the COVID-19 pandemic.

The model can only be expanded further to consider the role of behavior and policy.

At this stage, our preliminary analysis suggests that, in the absence of financial frictions,

optimal health expenditures are U-shaped over the lifetime in this model. With systematic

data on health inputs and shocks, as well as prices and budgets over the life course, these

implications could be fruitfully explored further. We leave these to future research.
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Figures

Figure 1: Mortality rates across populations
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Note: Human Mortality Database. Panel a shows the log10 of the mortality rates by age for
women born in 1860 and in 1940, in six European countries (Belgium, Denmark, the Netherlands,
Sweden, France, and Norway). Panel b shows the mortality rates for women born in France in
1860, 1880, 1900, 1920 and 1940.
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Figure 2: Health and mortality in the first two years of life
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Figure 3: Model behavior

(a) The evolution of the health distribution over
the lifetime
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(b) Age profile of population health and mortality

2
4

6
8

10
12

He
alt

h

-3
-2

.5
-2

-1
.5

-1
-.5

Lo
g 

of
 m

or
ta

lity

0 20 40 60 80 100
age

Log of mortality Variance of health
Mean health

Note: Simulated data for a population of 500,000 individuals. For this simulation we use the following
parameters: I=0.3575753, �=0.0004789, �=0.8353752, ↵=1.7883, µ0=0.925079. Panel a shows the density of
health for the population at ages 1, 40 and 90. Panel b plots the average health, the variance of health and
the mortality rates of the population over the lifetime.
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Figure 5: Model fit for humans and primates

(a) French women born in 1816
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(b) Female chimpanzees

Note: Panel a shows the data and estimated curve for French women born in 1816. Panel b shows
the data and estimated parameters for female chimps. Appendix Tables 1 and 2 show the esti-
mated parameters.

Figure 4: Adding accidents to the baseline model

(a) Adding accidents to the model
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(b) US Mortality rates per 1,000 in 1990, by cause
of death
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Note: Figure a: The baseline parameters are the same as in Figure 3b. The red dashed line shows the
mortality curve of a population that experiences a 0.005 percent chance of dying every period due to an
accident, unrelated to health. The dotted green line shows the model which assumes the accident rate is
zero at birth but jumps to 0.005 in adolescence. Mortality rates are higher as a result of external deaths
but more so in middle ages because of competing risks: older individuals that are hit by an accident shock
are also unhealthy and would die even in the absence of an accident shock. Figure b is reproduced from
Schwandt and Von Wachter (2019) who generously agreed to let us use it. The data come from period (not
cohort tables) so they are not directly comparable to ours. But we use it to demonstrate that the mortality
rate from non-disease related causes of death is well approximated by a step function that turns on in
adolescence. Mortality rates are shown in log(10) scale.
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Figure 6: Evolution of survival for French females born 1816-1940

(a) Observed and Estimated Cohort Survival Rates (b) Parameter evolution

(c) Estimated Aging Function for the 1816 and
1916 cohorts
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Note: Panel a shows the observed (blue markers) and estimated (red dashes) survival curves for four cohorts
of French women born about 40 years apart between 1816 to 1923. The y-axis shows the survival rate and
the x-axis shows the age. Panel b displays the evolution of estimated parameters, except for the aging
parameters which are shown in Appendix Figure 6c. On the left axis are the values for the three blue lines
corresponding to resources (I), the variance of the lifelong shock (�), and initial health at birth (µ). The
accident rate  in red is on the right axis. The model is estimated separately on each cohort. We treat
the two World Wars as two independent negative resources I shocks as discussed in the next section, see
Appendix C for details. Panel c plots the estimated aging function � ⇤ t↵ for the 1816 cohort (0.0006 · t1.79)
and the 1916 (0.0007 · t1.53) cohort. It shows that the aging rate has flattened dramatically due to a 15%
decline in ↵.
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Figure 7: SES gradients

(a) Persistent SES Mortality gap in Chetty et al.
(2016) (b) Persistent SES Mortality gap in our model
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(c) Effects of decreasing I by 50% on mortality
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(d) Effects of decreasing I by 50% on health
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Note: Panel a reproduces the results from Chetty et al. (2016). Panel b shows the predicted mortality
rate for the 1816 cohort (using the parameters from in Appendix Table 1 but setting the accident
rate at 0 throughout for simplicity) and the counterfactual mortality that results from a 95% decline
in I for this population. The baseline 1816 cohort is labeled “High Income” and the counterfactual
population is labeled “Low Income.” Panel c shows the simulated effects of increasing the baseline
level of I by 50% on mortality in both levels and percentage terms. We plot the gap between the
baseline and the affected population. This gap is computed as MR(low)-MR(high), or H(low)-
H(high). Panel d shows the effects of increasing the baseline level of I by 50% on mortality on
health. The baseline parameters are the same as in Figure 3b.
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Figure 8: The effects of negative in-utero shocks

(a) Monotonic response in Grossman’s model (b) U-shaped decreases in health in our model
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(c) Negative in-utero shocks increase lifetime
mortality
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Note: Panel a is reproduced from Almond and Currie (2011) and shows the decline in the health
stock due to a shock in utero that is predicted by the standard Grossman model. This effect is
initially large but it fades over time and will be close to zero among adults older than 30. Panel b
shows the simulated effects of a 50% decline in in-utero health for the 1816 French population in
the model (setting the accident rate at 0 throughout for simplicity). The figure plots the decreases
in health, in either levels or percentage terms. Panel c shows the effects on mortality in both levels
and percentage terms. The figure shows mortality increases. The baseline parameters are the same
as in Figure 3b.
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Figure 9: The effects of WWI on the mortality rates of French men born in 1896
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Note: The figure shows the scarring effect on mortality rates of WWI for men born in France in
1896 who turned 18 when WWI started in 1914 and who would have served in the military. The
model for this cohort includes one more parameter for WWI and another for WWII: we allow for
I to be different during each war. Instead of constructing a comparison group, counterfactual
curves showing what the mortality curves would look like in the absence of either or both wars
are derived directly by simulating the model without the war-related shocks to I .
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Figure 10: The effects of temporary increases in the threshold

(a) Harvesting during the French 2003 Heatwave (b) Harvesting in the model among the old
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(c) Harvesting in the model among the young
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Note: Panel a is is from Toulemon and Barbieri (2008) and shows the mortality displacement cre-
ated by the French 2003 Heatwave. The number of excess deaths in Summer 2003 is computed
relative to the number of deaths during the same period in 2000. The grey (hatched) area corre-
sponds to an excess (deficit) of 15,000 deaths. These excess deaths are computed for the entire
population. Panel b shows the simulated effects of a temporary increase in the threshold (from 0 to
0.8) at ages 60 and 61 on the 1816 French cohort (setting the accident rate to 0 for simplicity) which
results in approximately 8000 excess deaths during the shock and fewer deaths for the subsequent
2 years. Panel c shows the simulated effects of a temporary increase in the threshold (from 0 to
0.8) at ages 3 and 4 on the 1816 French cohort (setting the accident rate to 0 for simplicity) which
results in approximately 40,000 excess deaths during the shock. The effect is much larger among
the young because many more children are close to the threshold as shown in Figure 3a.

46



Figure 11: Effects of temporary shocks on log mortality rates
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Note: Results from simulations using the 1816 cohort parameters and assuming no adolescent
hump. Shocks correspond to a 50% change in the parameter, except for the threshold, which is
assumed to increase to 0.8 from 0. The shock starts at age 20 and lasts 10 years, ending at age 30.

Appendix A1: Figures

Figure 12: Comparison of q-rate in the paper and HMD (1816)
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Note: The life expectancy is 38.25 years with the q we use, to be compared with 39.86 with the
q in HMD and 39.83 years for the life expectancy computed by the HMD itself following a more
involved statistical methodology.
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Figure 13: Cohort vs. Period statistics, French Women 1860 and 1940

(a) Cohort vs Period Life Expectancy for French Females
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(b) Cohort vs Period Life Expectancy for French Males

20
30

40
50

60
Li

fe
 E

xp
ec

ta
nc

y

1820 1840 1860 1880 1900 1920
Year/Cohort Born

Cohort Period

Note: Data from the Human Mortality Database. Panel a shows period and cohort mortality rates
were almost identical for the cohort born in 1860, suggesting that for these cohorts the assumption
of stationarity holds. In other words, the mortality rate at age 50 of a French woman born in 1860
is about the same as the one of a French woman who is 50 year old in 1860. In 1940 a large gap has
appeared and the cohort mortality rates is significantly lower than the period rate. Panel b shows
the period and cohort life expectancy of French women since 1816. The two series are almost the
same up to roughly 1860 and they diverge after, with the cohort life expectancy exceeding the
period life expectancy substantially byt the end of the period.
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Figure 16: Model fit for humans and primates

(a) French men born in 1816
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(b) Male chimpanzees
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Note: Panel a shows the data and estimated curve for French men born in 1816. Panel b shows
the data and estimated parameters for male chimps. Appendix Tables 1 and 2 show the estimated
parameters.
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Figure 17: Model fit for birth cohorts born 1816-1923
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Note: this figure shows the fit of the model for each birth cohort. The fit is measured as the sum
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Figure 18: Increasing the lifetime depreciation rate by 50% by age
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Note: The Figure shows the gap in mortality or health between a baseline population and a population
with a 50% higher depreciation rate �. Gap is computed as MR(low)-MR(high), or H(low)-H(high). The
figures become very noisy after age 90 because there are almost no survivors, so we do not include these
data points. Simulated data for two population of 500,000 individuals each. The baseline parameters are
the same as in Figure 3b.
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Figure 19: Effect of exogenous temporary shocks at age 20

(a) Gaps in mortality
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(b) Log gaps in mortality
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Note: The figure shows the effects of a temporary change in a single parameter occuring at age 20. The
shock lasts for 10 years, ending at age 30. Each figure shows the different in mortality that results from
a temporary shock, relative to the counterfactual of no shock. In essence these figures plot the pattern
that would be predicted in an event study, where the coefficient of a dummy for the affected population is
intereacted with time fixed effects. Panel a shows the gaps in levels and panel b shows the gaps in logs.
The baseline parameters are the same as in Figure 3b.
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Table 5: Estimated parameters for World Wars for French Men born in 1896

(1) (2)
Initial condition µH 1.1417 0.8448
Investment I 0.4548 0.3009
Standard Deviation of Shock �e 1.0259 0.5983
Depreciation � 0.0002 0.0005
Aging ↵ 2.0052 1.6913
Adolescence Hump*  0.0025 0.0037
WWI Shock** -1.3104
Shock in 1914 -2.9302
Shock in 1915 -0.7485
Shock in 1916 -0.5333
Shock in 1917 0.2570
Shock in 1918 -0.1191
WWII Shock** 0.0577 0.1560
Fit (survival curve)^ 218.64 11.57
Fit (log of qx) 2.65 1.27
Fit during WWI (log of qx)~ 1.09 0.09
% Difference in # deaths during WWI~~ -0.14 -0.05
Fit during WWII (log of qx)~ 0.10 0.09
% Difference in # deaths during WWII~~ 0.02 -0.11
Actual Life Expectancy 37.94
Predicted Life Expectancy 37.98 37.96
Counterfactual Life expectancy without WWI^^ 54.13 54.74
Counterfactual Life expectancy without WWII^^ 39.90 39.10
Counterfactual Life expectancy^^ 56.22 55.97

*Hump is modeled as a accident rate that starts in adolescence, set to happen at (- 0.0175 * calendar
year) + 47.4 + 1based on the estimates provided in de La Rochebrochard (2000) and the assumption
that adolescence starts one year later for men.
**The estimates in this row corresponds to the value of the parameter during the world wars. For
example the first column shows that Iwas about 1.1417 throughout life but decreased to -1.3104
during WWI and decreased to 0.0577 during WWII. The same applies to column (2). In column
2, we allow the shocks in investment to vary across years during WWI.
^Our main fit criteria is the sum of squared errors of the survival rate at each age. We also report
the fit as the sum of squared errors of the log of qx (the probability of dying between ages x and
x+ 1). We don’t target these moments directly–we target the survival curve.
^^Counterfactual Life Expectancy is computed by holding all estimated parameters fixed and
setting the war parameters to the parameter I .
~This is computed as sum of squared errors during the war years. A lower number is better.
~~This is computed as (predicted - actual)/actual
To make the fit of the age distribution comparable across columns we use the (normalized) number
of deaths as weights.
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Appendix B: Mathematical appendix

The model is defined as follows:

8
>>>>>><

>>>>>>:

Ha = Ha�1 � d(a) + I + "t if Da�1 = 0

Da = I(Ha  H,Da�1 = 0),

D0 = 0

(1)

with d(a) = � ·a↵ � 2 (0,1),↵ 2 (0,1), and I 2 R. H and �
2
H

are normalized to be 0 and 1,

respectively. Let Ĥa ⌘ E [Ha | Ha > 0] denote the average health in the living population

with age a and �
Ĥt

⌘ V ar [Ha | Ha > 0] the variance of health among the living.

Proposition 1. Everyone dies eventually.

The cumulative distribution function of our process can be bounded above by a pro-

cess easier to study. Consider the process {H⇤
a
}1
a=1, defined by H

⇤
0 = H0 ⇠ N (µH , �

2
H
) and

the recurrence relation:

H
⇤
a
= H

⇤
a�1 + I � � · a↵ + "a , "a ⇠ N

�
0, �2

"

�
(2)

The process is similar to the one in our model except that there is no truncation. It is easy

to tell that 0  P (Ha > z)  P (H⇤
a
> z) for any z > 0. Now for any a � 0, H⇤

t
is normally

distributed with mean

µH⇤
a
= µH + I · a� �

aX

k=1

k
↵ (3)

and standard deviation

�H⇤
a
=

q
�
2
H
+ a · �2

"
(4)

Hence, P (H⇤
a
> z) = 1 � �(

z�µ
H

⇤
a

�
H

⇤
a

), where � is the CDF of the standard normal distribu-

tion. As a ! 1 , we have µH⇤
a
⇠ I · a � � · a

↵+1

↵+1 and �H⇤
a
⇠

p
a · �". Therefore if ↵ > 0,

µ
H

⇤
a

�
H

⇤
a

! �1 as a ! 1.
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Remark: Extended model with Accident shocks Proposition 1, 2 and 3 hold for the

extended model with accident shocks drawn indepently from the health status. Because

accident shocks are drawn independently from the health status, they leave the cdf of

health unchanged and therefore the proofs are unaffected.
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Appendix C: Notes on the empirical method

1. Data

Territory changes. The table below describes the details of the changes in territory that

took place in France since 1816.

Year Territorial Changes

1861 Annexion of departements of Savoie and Haute-Savoie, and of Comte de Nice

1869 Franco-Prussian war: loss of Alsace-Lorraine

1914- WWI: East of France, from Nord Pas-de-Calais to Vosges, is occupied by German military.

1919 At the end of WWI, Alsace-Lorraine is re-integrated to French territory

1939 WW2: Loss of Alsace-Lorraine

1943 WW2: Loss of Corsica

1945 Current territory: Alsace-Lorraine and Corsica are re-integrated to French territory
These changes in territory results in large changes in the population and death counts.

This is illustrated below for population. It is unclear how to compute mortality in the

year of the change. We compute it by using a weighted average of the population at the

beginning and end of the year.

Migration. In the HMD cohort population counts are available. However, because of

migrations, these counts cannot be used to derive a survival curve for a cohort. Because

of net positive immigration occurring in France, the number of individuals in a given

cohort can even increase from one year to the next. This is especially true at the end of

the Algerian War. (e.g. the size of the female cohort born in 1910 increases from 300, 369

to 303, 273 between 1962 and 1963, despite a reported mortality rate of 0.5162. The unit of

analysis in our model of mortality is a country cohort, hence abstracts from migration. In

our model the mortality rates coincide exactly with the slope of the survival curve. This

is not true in the HMD. The population of the cohort melts natives and immigrants of the

same age.
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2. Computing the death rates, survival rates and life expectancy

Death rates. When taking our model to the data we target the most direct counterpart

of our modeled cohort “mortality rate”, which is computed as the number of individuals

who died during a year, divided by the number of individuals alive at the beginning of

the day. In typical life tables this number corresponds to what demographer call qt, the

probability of dying in a given year, and is conceptually distinct to the mortality rate,

denoted by mt. The main difference lies in adjusting the denominator — the size of the

population. As more individuals die during the year the population needs to be adjusted

to estimate the size of the remaining population exposed to the risk of death. Because our

baseline model does not take this adjustment into account, we compute a direct counter-

part of our theoretical object. Therefore, we compute the raw death rate in year t for a

given cohort , qt , as follows:

qt =
Dt

Nt

where Dt is the death count for year t from the HMD cohort table and Nt is the population

on January 1st of year t. The HMD makes adjustments to compute a probability that is

corrected for the fact that the data do not tract the same individuals over time, so the

probability of dying is not correctly computed for a given cohort. The q we estimate with

the raw counts is very similar to what is reported by the HMD except for the first year of

life and the last years of life as shown in Figure 12. This results in our under-estimating

life expectancy somewhat.

Survival curves. We compute the survival curve recursively as follows. After initial-

izing S0 = 100 , we iteratively compute:

St = St�1 ⇥ (1� qt�1)

Life expectancy. Life Expectancy (LE) is an important statistics for the health profile

of a given cohort. We compute LE as a way of comparing our model to the data in a parsi-
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monious way. While we try to provide informative estimates of cohort life expectancy, we

do not claim that their accuracy is comparable to demographic studies. Nevertheless, as

we treat the series generated by our model in exactly the same manner as the data series,

we obtain pairs of LE that are readily comparable.

4. Estimation routine

We compute our estimates using Matlab’s canned fminsearch routine, a downhill simplex

method, and Powell (1964)’s conjugate direction method. We first estimate the model

using fminsearch until the objective function changes by less than 10�3 . The objective

function is the sum of squared errors between the model’s survival’s curve and the one

from the data. We then use these estimates as starting values for Powell’s routine. Once

Powell’s routine converges, we use the estimated values from this procedure and imple-

ment fminsearch again until it converges. The total estimations on the UCLA computing

cluster takes several hours. We experimented with different initial values for the param-

eters. The reported estimates correspond to the lowest final function value.

5. Bootstrapping standard errors

Estimates from sample data come with standard errors. However, the mortality rates in

the HMD are computed from birth certificates of the total population, not a sample of it.

A typical cohort in our study counts 400, 000 individuals. As a result, the standard errors

are negligible and all of the parameter uncertainty comes from model mispecification

and data inaccuracy rather than sampling variation. We therefore do not report standard

errors for the French cohorts.

In contrast, we do compute the standard errors for the chimpanzee estimates as the

data in that case consist of samples of one or two hundreds of individuals. One way

of bootstrapping the standard errors, given a series of mortality rates for a cohort, is to
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view each sample of size N as a sequence of Bernoulli trials with varying success rates.

Alternatively, one can view the survival curve of a population of size N as an N⇥1 vector

of age at death. One can produce bootstrap estimates by drawing with replacement M

subsamples of size N and compute the empirical survival curve.

1 Implications for optimal investments

1.1 Optimization in a stationary environment

So far we have considered a population that receives constant investments in its health,

uniformly over the lifetime. But is that behavior a reasonable approximation if resources

are optimally allocated over the lifetime? To answer this question, this section relaxes the

simplifying assumption of constant investment, and estimates the optimal investment

profile that a social planner concerned with maximizing the life-expectancy of a popula-

tion would choose. Remarkably, while this optimal investment profile indeed deviates

from the constant investment rule studied in the previous sections, it would result in

very similar patterns of mortality. In other words, the optimal investment sequence does

not fundamentally change the age-profile of mortality rates. We then evaluate the life

expectancy gains resulting from optimization.

First we develop notation to describe the problem that a benevolent social planner

would face. We solve this problem under two key assumptions. The first key assumption

is that the planner has a fixed budget but has the ability to borrow and save costlessly —

in other words, the planner knows exactly what the total lifetime resources are for a given

cohort and can be redistribute these resources across the lifetime at no cost.40 The second

assumption we make is that the planner wishes to maximize life expectancy.

The survival function tracks the probability of surviving over time. It is naturally

expressed as a function of the cdf of health in the population. The probability of surviving
40This is a standard set of assumptions in this type of models, for example see Murphy and Topel (2006).
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until the end of period a is Sa = 1 � Fa (0). Life expectancy at birth for a given cohort is

conveniently related to the survival function

LE =
1X

a=1

Sa

Several observations are in order. First, in practice, this is a finite sum. Second, this

is the cohort’s life expectancy, not the “period” life expectancy which is usually reported.

The social planner now chooses an investment path I = {Ia}a2N that is age-dependent,

instead of keeping the investment level I constant over the lifetime. The planner can

move resources over time periods costlessly, as if a perfect annuity were available, and

faces a given lifetime budget, B. Then the optimization problem takes the form

max
I

LE (I) = max
{Ia}

1X

a=1

Sa (I)

s.t.

1X

a=1

Ia·Sa (I)  B

The social planner chooses an optimal path such that the marginal effect of increasing

investment at a given age is equalized across all ages. The first order conditions are given

by

1X

s=a

@Ss (I)
@Ia

� �

"
Sa (I) +

1X

s�a

Is
@Ss (I)
@Ia

#
= 0 , 8a > 0

where � is the Lagrange multiplier and therefore 1
�

represents the shadow cost for the

social planner, starting from the optimal path, of an additional year of life expectancy.

Both terms in the bracket are positive, illustrating the key dynamic tradeoff in investment

with a fixed budget. An additional investment at one age increases the number of sur-

vivors at all subsequent ages, exerting greater pressure on the budget at all subsequent

periods. Intuitively, this channel gets weaker and weaker at older ages because mortal-

ity rates are high at old ages even with investments. While we were unable to formally
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makes this point analytically, we show numerically that this intuition is valid in the range

of parameters estimated from the data.

1.2 Timing of optimal investments, polynomials

To estimate the optimal investment, we follow a lower-dimensional sieves estimation

method.41 We start by approximating the investment profile over age with a first or-

der function of age (adding 2 parameters) and then with a second order polynomial

(3 more parameters). We impose the constraint that the total spending per cohort is

the same as the budget resulting from our estimated constant lifetime investment i.e.

B =
100X

a=1

Î·Sa (I). Given budget B we run a grid search to find the quadratic investment

profile that maximizes the life expectancy of the cohort.

The results of this exercise are displayed in Figure 20. Relative to the case with a

constant function, an optimal linear investment function redistributes more resources to

the young. If we allow a quadratic term then we find that a U-shape investment profile is

optimal to maximize the average life-expectancy in the population (panel a). Our original

model sets I to be constant in levels. But in percentage terms, relative to the baseline level

of health at a given age, I was already U-shaped in the basic model. What we find then

is that the optimal investment is even more U-shaped — it transfers additional resources

to the young and the old, away from the middle-aged individuals.

These results show that optimal health investments are largest when health is at its

lowest — that is, at very young and very old ages. Interestingly, health care expenditures

by age in most countries actually follow this age-profile (Alemayehu and Warner, 2004).

These findings are also consistent with empirical findings which show that health and the

demand for medical services are negatively correlated (Wagstaff, 1986) and that medical
41A fully nonparametric approach for the optimal investment profile over the lifetime would require

optimizing over a hundred or so parameters (one for each age) for each cohort. In the absence of a closed-
form solution, this is impractical. It is also not feasible since we have 100 data points: if we allow for a
unique investment level at every age we are under-identified (we would have 100 data points and at least
106 parameters to estimate).
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Figure 20: Optimal Investment Levels by Age

Note: The first panel represents the estimated investment path when investment is constrained to
be constant (blue line), linear (red line), or quadratic (yellow). In the second and third panel, 1816
cohort data is represented in blue. Both linear and quadratic optimal investment paths would
devote more resources to younger cohorts, reducing mortality rates in the early years.

expenditures rise sharply with age (e.g. De Nardi et al. 2010).42

Panel b shows the mortality curves before and after optimization — they have the

same basic shape we have observed. Yhe resulting survival curves are flatter in adulthood

and steeper in old ages, suggesting the rectangularization of survival might be in part

associated with the emergence of optimal investments. Optimizing investment results in

a gain of about 3 years of life expectancy in the specific case we show in Figure 20, based

on the estimated parameters for French women born in 1816.

Optimization when budgets depend on health. We have solved the optimization

problem under the assumption that stock of available resources is not influenced by the

health of the population. But if food and other resources are produced rather than taken
42These results are in contrast with the predictions of the Grossman model which predicts that invest-

ments would decline with age as individuals near death. See Wagstaff (1986)for an early discussion, or
Strulik (2015) for a more recent discussion of this issue.
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from the environment, health is likely to impact resources by affecting the work capacity

of the population. Indeed, nutrition levels and disease rates have been shown to affect

productivity and wages (Thomas et al., 2004). They also affect inputs into wages such as

cognition and education (Field et al., 2009). Many empirical studies report a correlation

between income and health (Cutler et al., 2012, Chetty et al., 2016) as noted above. While

our baseline model embeds the effect of resources on health, a causal link going in the

other direction is also likely at play: people who get sick or are hospitalized suffer a

subsequent drop in income (Smith, 1999, Dobkin et al., 2018). With panel data on wages,

it would be possible to improve on our estimates to account for these effects.

Overlapping generations. Another natural extension would be to embed our model

in an overlapping generations setting to reflect the fact that most social insurace pro-

grams, including health care insurance, involve transfers across cohorts at a given point

in time, rather than within-cohort transfers over time (as we have considered here for

simplicity). An overlapping generation model could also be used to link the health of

the parents with that of their children, a mechanism that has found some support in the

empirical literature.
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